

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA–533003, Andhra Pradesh, India DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

I Year II Semester		L	Т	Р	С
		3	0	0	3
MATHEMATICS-III (Vector Calculus, Transforms and PDE)					

Course Objectives:

- To familiarize the techniques in partial differential equations
- To furnish the learners with basic concepts and techniques at plus two level to lead them into advanced level by handling various real-world applications.

Course Outcomes: At the end of the course, the student will be able to

- interpret the physical meaning of different operators such as gradient, curl and divergence (L5)
- estimate the work done against a field, circulation and flux using vector calculus (L5)
- apply the Laplace transform for solving differential equations (L3)
- find or compute the Fourier series of periodic signals (L3)
- know and be able to apply integral expressions for the forwards and inverse Fourier transform to a range of non-periodic waveforms (L3)
- identify solution methods for partial differential equations that model physical processes(L3)

UNIT –I: Vector calculus:

Vector Differentiation: Gradient– Directional derivative – Divergence– Curl– Scalar Potential

Vector Integration: Line integral – Work done – Area– Surface and volume integrals – Vector integral theorems: Greens, Stokes and Gauss Divergence theorems (without proof) and problems on above theorems.

UNIT –II: Laplace Transforms:

Laplace transforms – Definition and Laplace transforms of some certain functions– Shifting theorems – Transforms of derivatives and integrals – Unit step function –Dirac's delta function Periodic function – Inverse Laplace transforms– Convolution theorem (without proof).

Applications: Solving ordinary differential equations (initial value problems) using Laplace transforms.

UNIT –III: Fourier series and Fourier Transforms:

Fourier Series: Introduction– Periodic functions – Fourier series of periodic function – Dirichlet's conditions – Even and odd functions – Change of interval– Half-range sine and cosine series.

Fourier Transforms: Fourier integral theorem (without proof) – Fourier sine and cosine integrals – Sine and cosine transforms – Properties (article-22.5 in text book-1)– inverse transforms – Convolution theorem (without proof) – Finite Fourier transforms.

UNIT -IV: PDE of first order:

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – Solutions of first order linear (Lagrange) equation and nonlinear (standard types) equations.

(10 hrs)

(10 hrs)

(8 hrs)

(10 hrs)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA 533003, Andhra Pradesh, India DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

UNIT – V: Second order PDE and Applications:

(10 hrs)

Second order PDE: Solutions of linear partial differential equations with constant coefficients –non-homogeneous term of the type e^{ax+by} , sin(ax+by), cos($ax \ by$), $x^m y^n$.

Applications of PDE: Method of separation of Variables– Solution of One-dimensional Wave, Heat and two-dimensional Laplace equation.

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44th Edition, Khanna Publishers, 2018.
- 2. B. V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata McGraw Hill Education.

Reference Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India. 2015.
- 2. Dean. G. Duffy, Advanced Engineering Mathematics with MATLAB, 3rd Edition, CRC Press, 2010.
- 3. Peter O' Neil, Advanced Engineering Mathematics, 7th edition, Cengage, 2011..
- 4. Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford University Press, 2015.